Fourth-order problems with nonlinear boundary conditions
نویسندگان
چکیده
منابع مشابه
Existence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملTridiagonal Fourth Order Approximations to General Two-Point Nonlinear Boundary Value Problems with Mixed Boundary Conditions
This paper develops fourth order discretizations to the two-point boundary value problem y(2kt)=f(t,y(t),y(1\t)), ^o^0) "o^(1)(°) = 60' al ?W + "l^1^1) = 5 1These discretizations have the desirable properties that they are tridiagonal and of "positive type".
متن کاملPositive solutions of nonlinear fourth order boundary value problems with local and nonlocal boundary conditions
We establish new existence results for multiple positive solutions of fourth order nonlinear equations which model deflections of an elastic beam. We consider the widely studied boundary conditions corresponding to clamped and hinged ends and many nonlocal boundary conditions, with a unified approach. Our method is to show that each boundary value problem can be written as the same type of pert...
متن کاملA Nonlinear Fourth-order Parabolic Equation with Nonhomogeneous Boundary Conditions
Abstract. A nonlinear fourth-order parabolic equation with nonhomogeneous Dirichlet–Neumann boundary conditions in one space dimension is analyzed. This equation appears, for instance, in quantum semiconductor modeling. The existence and uniqueness of strictly positive classical solutions to the stationary problem are shown. Furthermore, the existence of global nonnegative weak solutions to the...
متن کاملA Fourth Order Elliptic Equation with Nonlinear Boundary Conditions
In this paper we study the existence of infinitely many nontrivial solutions of the following problem, −∆2u = u in Ω, − ∂∆u ∂ν = f(x, u) on ∂Ω, and either ∂u ∂ν = 0 or ∆u = 0 on ∂Ω. We assume that f(x, u) is superlinear and either subcritical or a sublinear perturbation of the critical case. For the proof in the critical case we apply the concentration compactness method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2005
ISSN: 0377-0427
DOI: 10.1016/j.cam.2004.04.013